Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 605
Filtrar
1.
Org Biomol Chem ; 22(10): 2081-2090, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38363172

RESUMO

The spirostanol saponin gitonin was efficiently synthesized in 12 steps (longest linear sequence) in 18.5% overall yield from the commercially available isopropyl ß-D-1-thiogalactopyranoside (IPTG) and tigogenin. A cascade two-step glycosylation and Schmidt's inverse procedure significantly facilitated the synthesis of gitonin and its derivatives. The cytotoxic activities of gitonin and its structural analogues were evaluated against A549, HepG2, and MCF-7, and most of them exhibited moderate to excellent inhibitory activity. Our study demonstrates that the removal of the ß-D-galactopyranosyl residue (attached at C-2 of the glucose unit) from gitonin would not decrease the inhibition activities; however, further cleavage of sugar units could seriously reduce the activities. A bioassay on these cancer cell lines also suggested that the presence of 2α-hydroxy on the aglycone weakened the cytotoxicity of the designed saponin.


Assuntos
Antineoplásicos , Saponinas , Espirostanos , Saponinas/química , Estrutura Molecular , Glicosídeos Digitálicos , Antineoplásicos/farmacologia , Espirostanos/farmacologia , Linhagem Celular Tumoral
2.
Phytochemistry ; 219: 113985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237845

RESUMO

Ornithogalum thyrsoides Jacq belongs to the Asparagaceae family and is cultivated for ornamental purposes. The authors have previously reported several cholestane- and spirostan-type steroidal glycosides from O. thyrsoides. Conventional TLC analysis of the methanolic bulb extract of O. thyrsoides suggested the presence of unprecedented compounds; therefore, a detailed phytochemical investigation of the extract was performed and 35 steroidal glycosides (1-35), including 21 previously undescribed ones (1-21) were collected. The structures of 1-21 were determined mainly by analyses of their 1H and 13C NMR spectra with the aid of two-dimensional NMR spectroscopy. The isolated compounds were classified into three distinct groups: furostan-type (1, 2, 8-12, and 22), spirostan-type (3-7 and 23-26), and cholestane-type (13-21 and 27-35). Although the C/D-ring junction of the steroidal skeleton is typically trans-oriented, except for some cardiotonic and pregnane-type steroidal derivatives, 7 possess a cis C/D-ring junction. This is the first reported instance of such a configuration in spirostan-type steroidal derivatives, marking it as a finding of significant interest. Compounds 1-35 were evaluated for cytotoxicity against HL-60 human promyelocytic leukemia cells and SBC-3 human small-cell lung cancer cells. Compounds 3-6, 9, 17-21, 23-25, and 30-35 demonstrated cytotoxicity in a dose-dependent manner with IC50 values ranging from 0.000086 to 18 µM and from 0.00014 to 37 µM toward HL-60 and SBC-3 cells, respectively. Compound 19, which is obtained in a good yield and shows relatively potent cytotoxicity among the undescribed compounds, induces apoptosis in HL-60 cells, accompanied by arresting the cell cycle of HL-60 cells at the G2/M phase. In contrast, 19 causes oxidative stress-associated necrosis in SBC-3 cells. The cytotoxic mechanism of 19 is different between HL-60 and SBC-3 cells.


Assuntos
Colestanos , Leucemia , Neoplasias Pulmonares , Ornithogalum , Espirostanos , Humanos , Células HL-60 , Ornithogalum/química , Glicosídeos/química , Colestanos/química , Esteroides/farmacologia , Esteroides/química , Extratos Vegetais/farmacologia
3.
Nat Prod Res ; 38(5): 829-837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37125812

RESUMO

Aspidiatas C and D (1 and 2), two new spirostanol saponins, were isolated along with two known compounds, (25 R*)-spirost-5-en-3ß-yl α-L-rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-glucopyranoside (3), (25 R*)-spirost-5-en-3ß-yl α-L-rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranoside (4) from the whole plant of Aspidistra triradiata collected in Vietnam. The chemical structures were determined by HRESIMS, 1D- and 2D-NMR analysis, and comparison with published data. Compound 3 exhibited potent cytotoxicity against MCF7, HepG2, SK-LU-1, and HT-29 human cancer cell lines with IC50 values ranging from 0.19 to 0.65 µM. Compounds 1, 2, and 4 displayed moderate cytotoxic effects with IC50 values ranging from 12.32 to 82.27 µM. Compounds 1-4 were isolated from the genus Aspidistra for the first time.


Assuntos
Antineoplásicos , Saponinas , Espirostanos , Humanos , Saponinas/farmacologia , Saponinas/química , Antineoplásicos/química , Células HT29 , Vietnã
4.
Nat Prod Res ; 38(1): 169-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36190791

RESUMO

The rhizome of Rohdea chinensis (Baker) N.Tanaka (RRc) is a famous folk medicine for the treatment of carbuncles and pharyngitis. Steroidal saponins (SSs) were considered to be the most abundant active constituents in RRc. However, to date, the in-depth study of SSs is still lacking. This study was aimed to investigate the SSs profiles of RRc extract by HPLC-ESI-QTOF-MS/MS. Analysis was performed on an Agilent poroshell 120 EC-C18 column (2.1 mm × 100 mm, i.d., 2.7 µm) with 0.1% formic acid aqueous solution and acetonitrile as the mobile phase under gradient conditions. The results showed that 32 SSs including 20 furospirostanol, 11 spirostanol and 1 pseudo-spirostanol saponins were identified, 5 of which were reported in this plant for the first time. This is the first report on the analysis of SSs in RRc. This novel analysis method may stimulate further research regarding the identification of SSs in other plant species.


Assuntos
Asparagaceae , Saponinas , Espirostanos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Saponinas/química
5.
Chem Biol Interact ; 388: 110835, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38122922

RESUMO

Osteoarthritis (OA) is a common joint degenerative disease, and chondrocyte injury is the main pathological and physiological change. Ruscogenin (Rus), a bioactive compound isolated from Radix Ophiopogon japonicus, exhibits various pharmacological effects. The aim of this research was to test the role and mechanism of Rus on OA both in vivo and in vitro. Destabilized medial meniscus (DMM)-induced OA model was established in vivo and IL-1ß-stimulated mouse chondrocytes was used to explore the role of Rus on OA in vitro. In vivo, Rus exhibited protective effects against DMM-induced OA model. Rus could inhibit MMP1 and MMP3 expression in OA mice. In vitro, IL-1ß-induced inflammation and degradation of extracellular matrix were inhibited by Rus, as confirmed by the inhibition of PGE2, NO, MMP1, and MMP3 by Rus. Also, IL-1ß-induced ferroptosis was suppressed by Rus, as confirmed by the inhibition of MDA, iron, and ROS, as well as the upregulation of GSH, GPX4, Ferritin, Nrf2, and SLC7A11 expression induced by Rus. Furthermore, the suppression of Rus on IL-1ß-induced inflammation, MMPs production, and ferroptosis were reversed when Nrf2 was knockdown. In conclusion, Rus attenuated OA progression through inhibiting chondrocyte ferroptosis via Nrf2/SLC7A11/GPX4 signaling pathway.


Assuntos
Ferroptose , Osteoartrite , Espirostanos , Animais , Camundongos , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Transdução de Sinais
6.
Am J Chin Med ; 51(7): 1879-1904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650421

RESUMO

Ruscogenin (RUS), a major effective steroidal sapogenin derived from Ophiopogon japonicas, has been reported to alleviate myocardial ischemia (MI), but its cardioprotective mechanism is still not completely clear. In this study, we observed that RUS markedly reduced MI-induced myocardial injury, as evidenced by notable reductions in infarct size, improvement in biochemical markers, alleviation of cardiac pathology, amelioration of mitochondrial damage, and inhibition of myocardial apoptosis. Moreover, RUS notably suppressed oxygen-glucose deprivation (OGD)-triggered cell injury and apoptosis. Notably, RUS demonstrated a considerable decrease of the interaction between myosin IIA and F-actin, along with the restoration of mitochondrial fusion and fission balance. We further confirmed that the effects of RUS on MI were mediated by myosin IIA using siRNA and overexpression techniques. The inhibition of myosin IIA resulted in a significant improvement of mitochondrial fusion and fission imbalance, while simultaneously counteracting the beneficial effects of RUS. By contrast, overexpression of myosin IIA aggravated the imbalance between mitochondrial fusion and fission and partially weakened the protection of RUS. These findings suggest that myosin IIA is essential or even a key functional protein in the cardioprotection of RUS. Overall, our results have elucidated an undiscovered mechanism involving myosin IIA-dependent mitochondrial fusion and fission balance for treating MI. Furthermore, our study has uncovered a novel mechanism underlying the protective effects of RUS.


Assuntos
Isquemia Miocárdica , Miosina não Muscular Tipo IIA , Espirostanos , Humanos , Dinâmica Mitocondrial , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/genética , Espirostanos/farmacologia , Espirostanos/uso terapêutico , Apoptose/genética
7.
J Chem Inf Model ; 63(9): 2881-2894, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37104820

RESUMO

Alzheimer's disease (AD), a neurodegenerative disease with no cure, affects millions of people worldwide and has become one of the biggest healthcare challenges. Some investigated compounds play anti-AD roles at the cellular or the animal level, but their molecular mechanisms remain unclear. In this study, we designed a strategy combining network-based and structure-based methods together to identify targets for anti-AD sarsasapogenin derivatives (AAs). First, we collected drug-target interactions (DTIs) data from public databases, constructed a global DTI network, and generated drug-substructure associations. After network construction, network-based models were built for DTI prediction. The best bSDTNBI-FCFP_4 model was further used to predict DTIs for AAs. Second, a structure-based molecular docking method was employed for rescreening the prediction results to obtain more credible target proteins. Finally, in vitro experiments were conducted for validation of the predicted targets, and Nrf2 showed significant evidence as the target of anti-AD compound AA13. Moreover, we analyzed the potential mechanisms of AA13 for the treatment of AD. Generally, our combined strategy could be applied to other novel drugs or compounds and become a useful tool in identification of new targets and elucidation of disease mechanisms. Our model was deployed on our NetInfer web server (http://lmmd.ecust.edu.cn/netinfer/).


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Espirostanos , Animais , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Espirostanos/química , Espirostanos/uso terapêutico
8.
Bioorg Chem ; 130: 106268, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399863

RESUMO

The phytoconstituents of the fraction with hemostatic activity of the 70% aqueous ethanol extract of Ypsilandra thibetica Franch. were investigated. As a result, fourteen previously unreported spirostanol saponins, ypsilandrosides Z1-Z14, and nine known analogues were isolated and characterized by MS, NMR, and chemical methods. Among them, ypsilandrosides Z1-Z4 (1-4) have a rare 12-O-ß-d-glucopyranosyl group, while ypsilandrosides Z5-Z8 (5-8) possess a rare double bond between C-4 and C-5, and a hydroxyl or carbonyl located at the C-6. All isolates were further tested for their hemostatic activity. The results suggested that five spirostanol tetraglycosides show favorable inducing platelet aggregation activities. Among them, ypsilandroside G (16) displayed significant inducing platelet aggregation activity with an EC50 value of 57.17 µM. Furthermore, the preliminary structure-activity relationship of these spirostanol glycosides' hemostatic activity was discussed.


Assuntos
Glicosídeos , Hemostáticos , Melanthiaceae , Espirostanos , Glicosídeos/farmacologia , Glicosídeos/química , Hemostáticos/farmacologia , Espectroscopia de Ressonância Magnética , Melanthiaceae/química , Espirostanos/química
9.
J Steroid Biochem Mol Biol ; 224: 106174, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36055516

RESUMO

A four-step synthesis of five- and six-membered E/F ring spiroethers from tigogenin has been developed. An efficient strategy that features bis-Grignard reaction of dinorcholanic lactone with appropriate bis(bromomagnesio)alkanes followed by acid-mediated spirocyclization was employed to construct a new class of steroid compounds having E and F ring junction as an oxa-carbacyclic system. The synthesized carbaanalogs interact with liposomes and albumin, and also exhibit antibacterial and antifungal activity, demonstrating their pharmacological potential.


Assuntos
Sapogeninas , Espirostanos , Sapogeninas/farmacologia , Esteroides/farmacologia , Espirostanos/farmacologia
10.
Int Immunopharmacol ; 111: 108806, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914447

RESUMO

Lung cancer is a leading cause of tumor-associated death worldwide. Autophagy plays a key role in regulating lung cancer progression, and is a promising option for lung cancer treatment. Saponins are a group of naturally occurring plant glycosides, characterized by their strong foam-forming properties in aqueous solution, and exert various biological properties, such as anti-inflammation and anti-cancer. In the present study, we for the first time explored the effects of gitogenin (GIT), an important saponin derived from Tribulus longipetalus, on lung cancer progression both in vitro and in vivo. We found that GIT markedly reduced the proliferation and induced apoptosis in lung cancer cells through increasing the cleavage of Caspase-3 and poly (ADP-ribose) polymerases (PARPs). In addition, GIT-incubated lung cancer cells exhibited clear accumulation of autophagosome, which was essential for GIT-suppressed lung cancer. Mechanistically, GIT-induced autophagy initiation was mainly through activating AMP-activated protein kinase (AMPK) and blocking protein kinase B (AKT) signaling pathways, respectively. Moreover, the autophagic flux was disrupted in GIT-treated lung cancer cells, contributing to the accumulation of impaired autophagolysosomes. Importantly, we found that suppressing autophagy initiation could abolish GIT-induced cell death; however, autophagosomes accumulation sensitized lung cancer cells to cell death upon GIT treatment. More in vitro experiments showed that GIT led to reactive oxygen species (ROS) production in lung cancer cells, which was also involved in the modulation of apoptosis. The in vivo findings confirmed the effects of GIT against lung cancer progression with undetectable toxicity to organs. In conclusion, we provided new insights into the treatment of lung cancer, and GIT might be an effective strategy for future clinical application.


Assuntos
Neoplasias Pulmonares , Saponinas , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Autofagia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Espirostanos
11.
Comput Intell Neurosci ; 2022: 8066126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845882

RESUMO

To investigate the pharmacodynamic effects of ruscogenin on acute kidney injury and the Rev-erbα/ß regulation of ferroptosis intervention mechanism. The C57BL-6 mice were induced acute kidney injury with folic acid. Plasma, urine, and kidney samples were collected after intraperitoneal injection of ruscogenin (0.01, 0.1, and 1 mg/kg). We measured mouse kidney function indicators, including creatinine (CRE), blood urea nitrogen (BUN), N-acetyl-ß-D-glucosidase (NAG), albumin, albumin and creatinine rate (ACR), renal index, and renal injury molecule-1 expression. Meanwhile, we detected the levels of ferroptosis indicators malondialdehyde (MDA), carbonylated proteins, iron ions, glutathione peroxidase 4 (GPX-4), and glutathione (GSH). The expression of solute carrier family 7 member 11 (Slc7a11), heme oxygenase-1 (HO-1), and Rev-erbα/ß were detected by the Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR), respectively. Ruscogenin (1 mg/kg) significantly reduced the index of folic acid-induced acute kidney injury and alleviated acute kidney injury. In kidney tissues, ruscogenin inhibited folic acid-induced Rev-erbα/ß expression, restored HO-1 and SLC7A11 expression to normal levels, and alleviated ferroptosis. Ruscogenin ameliorates acute kidney injury via suppressing ferroptosis in kidney tissues through modulation of the Rev-erbα/ß-SLC7A11/HO-1 pathway.


Assuntos
Injúria Renal Aguda , Ferroptose , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Albuminas/efeitos adversos , Albuminas/metabolismo , Animais , Creatinina/efeitos adversos , Creatinina/metabolismo , Ácido Fólico/efeitos adversos , Ácido Fólico/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espirostanos
12.
Toxicology ; 477: 153275, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35905946

RESUMO

Shenmai injection (SMI) is a patented traditional Chinese medicine that is extracted from Panax ginseng and Ophiopogon japonicus and is commonly used to treat cardiovascular diseases and tumors. The O. japonicus extract Ophiopogonin D' (OPD') is highly cardiotoxic. Mitochondria are central to OPD'-induced cardiotoxicity, although the precise mechanisms remain unclear. Excessive mitophagy activation and mitochondrial dysfunction lead to apoptosis, and the PTEN-induced kinase 1(PINK1)/Parkin pathway is critical in regulating mitophagy and mitochondrial function. We investigated the role of the PINK1/Parkin pathway in OPD'-induced mitochondrial damage and cardiotoxicity in AC16 cells. Concentrations of 2 µM OPD' and above inhibited cardiomyocyte viability and increased lactate dehydrogenase (LDH) release in a concentration- and time-dependent manner. OPD' was toxic to cells and mitochondria and increased the rate of apoptosis, triggering pyknosis, decreasing mitochondrial membrane potential (MMP), and decreasing the protein expression of the biogenesis regulator peroxisome proliferator-activated receptor γ coactivator-1 alpha (PGC-1α). The increased ratio of microtubule-associated proteins 1 A/1B light chain 3B (LC3-II/LC3-I) in mitochondria indicated that OPD' induced mitophagy. OPD' significantly induced oxidative stress and apoptosis, including increased reactive oxygen species (ROS) generation and decreased nuclear factor erythroid-2 related factor 2 (Nrf2), heme oxygenase-1(HO-1), and B-cell lymphoma 2 (Bcl-2) protein expression. OPD' activated the PINK1/Parkin pathway and promoted PINK1/Parkin translocation to mitochondria. Inhibiting mitophagy attenuated OPD'-induced PINK1/Parkin pathway activation and preserved mitochondrial biogenesis, consequently mitigating OPD'-induced mitochondrial dysfunction and apoptosis. These findings suggest that OPD'-induced cardiomyocyte mitophagy and mitochondrial damage are at least partially mediated by dysregulation of the PINK1/Parkin pathway.


Assuntos
Cardiotoxicidade , Mitofagia , Humanos , Proteínas Quinases/metabolismo , Saponinas , Transdução de Sinais , Espirostanos , Ubiquitina-Proteína Ligases/metabolismo
13.
Appl Biochem Biotechnol ; 194(12): 5862-5877, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35834054

RESUMO

Lung cancer, one of the most often diagnosed malignancies, is the top cause of death in both men and women globally. In both developed and emerging countries, high incidences of cancer are becoming a huge health burden. Natural resources, including plants, have always been a possible source of lead compounds in the identification of optimal medications for cancer treatment, with natural resources accounting for around half of all anticancer drugs. Ruscogenin, a natural saponin, is a major component of Radix Ophiopogon japonicus with a well-established anticancer activity. In this study, the anticancer potential of ruscogenin against a B(a)P-challenged lung cancer model in mice was assessed. The mice were categorized into four groups: group I was as the control group, group II mice were challenged with B(a)P, group III rodents were treated with ruscogenin prior to challenge with B(a)P, and group IV rodents were treated with ruscogenin after B(a)P administration. Tumor incidence was calculated, and the following parameters were analyzed: body weight, lung weight, immunoglobulin (Ig) levels (IgG, IgA, and IgM), key marker enzymes, and proinflammatory cytokines in both treated and control mice. Lung tissues were analyzed via histopathological analysis. According to our results, all the markers that favor the growth of cancer were increased in the lung cancer group. After administration of ruscogenin, all the markers returned to their original levels, revealing the anticancer potential of ruscogenin.


Assuntos
Neoplasias Pulmonares , Ophiopogon , Espirostanos , Camundongos , Feminino , Animais , Citocinas , Espirostanos/farmacologia , Espirostanos/uso terapêutico , Espirostanos/análise , Neoplasias Pulmonares/tratamento farmacológico
14.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2721-2728, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35718492

RESUMO

This study aims to unveil the effect of ophiopogonin D(OPD) on isoproterenol(ISO)-induced apoptosis of rat cardiomyocytes and the possible targets, which is expected to provide clues for further research on the myocardial protection of ophiopogonins. Cell count kit-8(CCK-8) assay was used to detect viability of cells treated with OPD and ISO, Western blot to examine the effect of OPD and ISO on the expression of endoplasmic reticulum stress-related Bip, Bax, Perk, ATF4, caspase-12, and CHOP, flow cytometry to determine cell apoptosis rate, and Hoechst 33258 and Tunel staining to observe cell apoptosis and morphological changes. In addition, the probe for calcium ion-specific detection was employed to investigate calcium ion release from the endoplasmic reticulum, and OPD-bond epoxy-activated agarose solid-phase microspheres were prepared and used as affinity matrix to capture OPD-binding target proteins in H9 c2 cell lysate. For the target proteins of OPD identified by high-resolution mass spectrometry, the related signal pathways were enriched and the potential targets of OPD against cardiomyocyte injury were discussed. The experimental result showed that 10 µmol·L~(-1) ISO can significantly induce the expression of endoplasmic reticulum stress-related proteins and promote cell apoptosis. Different concentration of OPD can prevent the damage of myocardial cells caused by ISO. According to mass spectrometry results, 19 proteins, including Fam129 a and Pdia6, were involved in multiple signaling pathways such as the unfolded protein reaction bound by the ERN1 sensor, tricarboxylic acid cycle, and Nrf2 signal transduction pathway. The above results indicate that OPD protects cardiomyocytes by regulating multiple signaling pathways of target proteins and affecting cell cycle progression.


Assuntos
Miócitos Cardíacos , Espirostanos , Animais , Apoptose , Cálcio/farmacologia , Estresse do Retículo Endoplasmático , Isoproterenol/toxicidade , Ratos , Saponinas , Espirostanos/farmacologia
15.
Curr Pharm Des ; 28(24): 2001-2009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619253

RESUMO

BACKGROUND: Ruscogenin (RUS) has anti-inflammatory and antithrombotic effects, while its potential effects on deep venous thrombosis (DVT) and pulmonary embolism (PE) remain unclear. OBJECTIVE: We aimed to elucidate the effects of RUS on DVT and PE induced by the inferior vena cava stenosis (IVCS) model and investigate the underlying mechanism. METHODS: Male C57/BL6 mice were used to explore whether IVCS model could be complicated with deep venous thrombosis and pulmonary embolism. Then, effects of RUS on DVT and PE related inflammatory factors and coagulation were examined using H&E staining, ELISA, and real-time PCR. Western blot analysis was used to examine the effects of RUS on MEK/ERK/Egr-1/TF signaling pathway in PE. RESULTS: IVCS model induced DVT and complied with PE 48 h after surgery. Administration of RUS (0.01, 0.1, 1 mg/kg) inhibited DVT, decreased biomarker D-Dimer, cardiac troponin I, N-Terminal probrain natriuretic peptide in plasma to ameliorate PE induced by IVCS model. Meanwhile, RUS reduced tissue factor and fibrinogen content of lung tissue, inhibited P-selectin and C-reactive protein activity in plasma, and suppressed the expressions of interleukin-6 and interleukin-1ß in mice. Furthermore, RUS suppressed the phosphorylation of ERK1/2 and MEK1/2, decreasing the expressions of Egr-1 and TF in the lung. CONCLUSION: IVCS model contributed to the development of DVT and PE in mice and was associated with increased inflammation. RUS showed therapeutic effects by inhibiting inflammation as well as suppressing the activation of MEK/ERK/Egr-1/TF signaling pathway.


Assuntos
Embolia Pulmonar , Trombose Venosa , Animais , Constrição Patológica/complicações , Inflamação/complicações , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Embolia Pulmonar/tratamento farmacológico , Transdução de Sinais , Espirostanos , Tromboplastina/metabolismo , Tromboplastina/farmacologia , Tromboplastina/uso terapêutico , Veia Cava Inferior/metabolismo , Trombose Venosa/tratamento farmacológico
16.
Inflammation ; 45(4): 1720-1731, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35460395

RESUMO

The sustained activation of the nuclear factor κB (NF-κB) signaling pathway has been observed in human inflammatory bowel disease (IBD). Ophiopogonin D (OP-D) is a small molecular compound isolated from Ophiopogon japonicus, a widely used herbal remedy. In this study, dextran sodium sulfate was used to make a mouse model of experimental colitis and verify the effect of OP-D on the mouse model of experimental colitis. Small molecule-protein molecular docking approaches were also used to discover the mechanisms underlying the OP-D-induced regulation of colitis. In colitis, the OP-D can inhibit the apoptosis of intestinal mucosa cells, restore the intestinal barrier, and alleviate inflammation. The molecular docking simulations showed that OP-D had a high affinity with the REL-homology domain of NF-κB-p65 that affected its translocation to the nucleus. In a cell study, the effects of OP-D on inflammation and barrier dysfunction were significantly decreased by a small interfering RNA targeting NF-κB-p65. Further, the LPS-induced increase in NF-κB-p65 in the nucleus was also significantly inhibited by OP-D. OP-D alleviated experimental colitis by inhibiting NF-κB. New insights into the pathogenesis and treatment options of colitis are provided through this study.


Assuntos
Colite , NF-kappa B , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Saponinas , Transdução de Sinais , Espirostanos
17.
Drug Des Devel Ther ; 16: 1099-1106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35440867

RESUMO

Introduction: Endothelial dysfunction (ED) is associated with the progression of sepsis. Ruscogenin (RUS) has shown considerable efficacy in treating ED and sepsis. In the current study, the effects of RUS on sepsis-induced ED were assessed, and the mechanism was explored by focusing on the interactions of RUS with miRs. Methods: Sepsis was induced in mice and in human umbilical vein endothelial cells (HUVECs) using LPS method. Expression profile of miRs responding to sepsis was determined. Symptoms associated with sepsis and ED were examined after treatment with RUS. Changes in mouse survival, arterial structure, systemic inflammation, cell viability, apoptosis, and the miR-146a-5p/NRP2/SSH1 axis were analyzed. Results: Based on the microarray results, miR-146a-5p was selected as the therapeutic target. RUS improved survival rates and arterial structure, suppressed proinflammatory cytokines, down-regulated miR-146a-5p, and up-regulated NPR2 and SSH1 in septic mice. In HUVECs, RUS increased cell viability, suppressed apoptosis, inhibited inflammation, downregulated miR-146a-5p, and increased NRP2 and SSH1 levels. The re-induction of miR-146a-5p-5p impaired the protective effects of RUS on HUVECs. Discussion: Effects of RUS on sepsis-induced impairments in endothelium relied on the suppression of miR-146a-5p.


Assuntos
MicroRNAs , Sepse , Animais , Apoptose , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/induzido quimicamente , Inflamação/complicações , Inflamação/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/farmacologia , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Espirostanos
18.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328410

RESUMO

Laxogenin C (LGC) is a natural spirostanol deriving from plant hormone which has shown growing regulation similar to those of brassinosteroids. In the present study, LGC showed a promoting effect on tomato seed germination and seedling growth in a dose-dependent manner. We applied LC-MS/MS to investigate metabolome variations in the tomato treated with LGC, which revealed 10 differential metabolites (DMs) related to KEGG metabolites, associated with low and high doses of LGC. Enrichment and pathway mapping based on the KEGG database indicated that LGC regulated expressions of 2-hydroxycinnamic acid and l-phenylalanine to interfere with phenylalanine metabolism and phenylpropanoids biosynthesis. The two pathways are closely related to plant growth and lignin formation. In our further phenotypic verification, LGC was confirmed to affect seedling lignification and related phenylpropanoids, trans-ferulic acid and l-phenylalanine levels. These findings provided a metabolomic aspect on the plant hormone derivates and revealed the affected metabolites. Elucidating their regulation mechanisms can contribute to the development of sustainable agriculture. Further studies on agrichemical development would provide eco-friendly and efficient regulators for plant growth control and quality improvement.


Assuntos
Lignina , Solanum lycopersicum , Cromatografia Líquida , Lignina/metabolismo , Solanum lycopersicum/metabolismo , Metaboloma , Metabolômica , Fenilalanina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Espirostanos , Espectrometria de Massas em Tandem
19.
Arch Toxicol ; 96(7): 2139-2142, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344071

RESUMO

Dietary supplements sold for anabolic benefits or performance enhancement often contain substances, which are non-approved and might lack quality controls. With regard to athletes, the inclusion of substances or methods in the prohibited list of the World Anti-Doping Agency is based on medical or scientific evidence. 5α-hydroxy-laxogenin is a synthetic spirostane-type steroid, which is contained in dietary supplements and advertised as anabolic agent. To date, evidence is missing on anabolic or androgenic activity of 5α-hydroxy-laxogenin. We investigated its androgenic potential in two in vitro bioassays. While no activity was observed in the yeast androgen screen, 5α-hydroxy-laxogenin was able to trans-activate the androgen receptor in human prostate cells in a dose-dependent manner. Interestingly, a biphasic response was observed with antagonistic properties at lower concentrations and agonistic effects at higher concentrations tested. The demonstrated androgenic properties of the higher concentrations demonstrate that further investigations should focus on the safety as well as on potential anabolic effects of 5α-hydroxy-laxogenin. This is of interest with regard to abuse for doping purposes.


Assuntos
Anabolizantes , Doping nos Esportes , Espirostanos , Anabolizantes/toxicidade , Androgênios/toxicidade , Suplementos Nutricionais , Humanos , Masculino , Espirostanos/farmacologia , Esteroides , Congêneres da Testosterona
20.
Oxid Med Cell Longev ; 2022: 4877275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308175

RESUMO

Interaction of intestinal barrier dysfunction and intestinal inflammation promotes the progression of Crohn's disease (CD). A more recent study has suggested that ruscogenins (RUS) can exert anti-inflammatory effects through activation of the Nrf2/NQO1 pathway. The current study is aimed at determining the functionalization of RUS on CD-like colitis. Wild-type (WT) mice induced with trinitrobenzene sulfonic acid (TNBS) exhibit a significant inflammation in their colon and are hence widely used for CD models. In the current study, the mice were treated with the Nrf-2 antagonist (ML385) or ruscogenin (RUS) whereas normal WT mice were kept as the negative control. Comparative analysis was then performed on the inflammation and barrier function of the colons. In vitro analysis of mouse colonic organoid systems revealed the influence of RUS on LPS-induced apoptosis, cytokine, and chemokine expressions in the intestinal epithelium. It was found that RUS ameliorates murine colitis through activation of the Nrf2/NQO1 pathway which was presented as a decrease in inflammation score and downregulated levels of cytokine and chemokine synthesis, as well as increased intestinal permeability. Further, it was noted that RUS alleviated LPS-induced apoptosis in the intestinal epithelium cells through upregulation of the Nrf2/NQO1 signaling pathway in the mouse colonic organoids. In addition, ruscogenin (RUS) attenuated the levels of Bax and C-caspase-3 through activation of the Nrf2/HO1 signaling pathway both in vivo and in vitro. Therefore, it was evident that RUS can be applied as a potential alternative therapeutic agent in CD based on its protective effects on the barrier function and anti-inflammatory activity.


Assuntos
Doença de Crohn , Enterite , Animais , Apoptose , Células Epiteliais/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Espirostanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...